
Abstract 

Extracting Dynandcs front 
Ocean Wave Time Series Datal 

Paul C. Liu2 

Recent development:s in ch<wLic dynamic!; have 
indicated that qualitative information of a dynamical ! 
system can be extracted from the observation of a sing!· 
time series as the time series bears the marks of all 
other variables relevant in the underlying dynamics. 
this paper we review this approach and explore its 
possible applications to ocean wave dynamics. 

Introduction 

The study of ocean wave dynamics has been done : 
generally using the equations of motion. The difficul 
in verifying the theoretical analysis with mcasuremen 
lies in the specification of an initial state that I 
requires the measurement of functions over a three
dimensional domain. Acquisition of such measurements' 
usually prohibitive. Typical experiments employ wave 
probes that produce time series of surface fluctuati 
only. A time series of one variable generally provid~ 
a limited amount of dynamical information. Hecent 
developments in chaotic dynamics have advanced theor 
that furnish a procedure for reconstructing a dyn · 
system from the observation of a single variable. 
a time series bears the marks of all other variables 
relevant in the underlying dynamics, and key features. 
the dynamics can be extracted from a given time serie 
In this paper we expect to explore the ch<lotic dynam 
approach and its application to the study of ocean 
dynamics. Specifically we examine if it is possible 
identify an attractor for an ocean wave time series 
determine its dimensionality as well 21s the minimal 
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dimcnc;i <ltl<ll i t:y of the phase space within which the 
attructor is embedded. 

Phase Space 

The study of chaotic dynamics provides a new and 
stimulating approach to the study of fluid flow. The 
basic proposition is that relatively simple systems of 
coupled nonlinear first-order equations often have 
chaotic solutions. These solutions -- sometimes called 
strange attractors -- are much more irregular than 
solutions of deterministic equations. This has 
generated the hypothesis that some of the fluid flow 
problems can be qualitatively explained by models that 
are highly simplified in comparison with full 
hydrodyn<unic equations. While the dynamic systems 
approach hil!; not yet achieved much quantitative 
predictive power at the present, it has provided a 
significonL new direction of study. 

Following Lorenz (1963) we consider a dyna~ic 
formully as: 

ely/ell ~ F(y), ( 1) 

time t is the single independent varable, y = (y 1 , 
Y2,···Ynl represents a state of the system and may be 
thought of as a point in a suitably defined space -
usually called phase space, and the vector field F(y) is 

· n general a non-linear operator acting on points in the 
,phase space. A state which is varying in accordance 
with (1) is represented by a moving particle traveling 

:along a trajectory in phase space. The trajectory 
becomes a strange attractor when it is chaotic, 
sensitively depends on the initial conditions, and it is 
ttracted to a bounded region in phase space. 

11<lllY current studies on chaotic dynamics have 
sed on understanding and characterization of strange 

tractors. Strange attractors can be generally 
aracterized through quantities like Kolmogorov 
tropy, Lyilpunov exponents, and generalized dimensions. 

f the governing equations are known, then there are 
eliable methods for determining these quantities. If 

· er only measurements of time series are available, 
the problem becomes much more difficult. In this 

per we expect to pursue this latter course without 
ediately resorting to our established knowledge of 
an wave dynamics. In particular, we are primarily 

terestcd in the applicability of the various 
aches of characterizing strange attractors and 

termining basic degrees of freedom of the system that 
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govern the quantitative predictability of the dynamic 
system. 

Kolmoqorov Entropy 

Due to the sensitivity of the chaotic dynamic 
system to the initial conditions, trajectories arising 
from two different but indistinguishable initial 
conditions, within a given precision, will evolve into 
distinct states after a finite interval of time. Thus 
chaotic trajectories reveal new informations about the 
system continuously. The Kolmogorov entropy (Komogorov, 
1959) has been used to measure the rate at which 
information is being created by the dynamical system. 
It is zero for non-chaotic and infinite for random 
systems. A finite and positive Komogorov entropy 
usually implies deterministic chaos. Detailed studies 
of Komogorov entropy were given in Farmer et al. (1983), 
Grassbeger and Procaccia (1983) and others. 

Lyapunov Exponents 

Lyapunov exponent quantifies the local dynamical 
behavior or the average stability o[ trajectories on an 
attractor that are determined by the re;;ponse of the 
system to small pertubations. Positive Lyapunov 
exponents generally indicate orbital divergence of the 
trajectory and hence chaotic motion. For non-chaotic 
systems all exponents are negative or zero. Algorithms 
have been developed to extract the Lyapunov exponents of 
an attractor reconstructed from a measured time series, 
e.g., Wolf et al. (1985), Eckmann and Ruelle (1985), and 
recently Bryant et al. ( 1990). A comparison of the 
various earlier algorithms for determininq Lyupunov 
exponents from experimental data is C)iven in Va;;tano and 
Kostelich (1986). 

Generalized Dimensions 

Dimension is one of the most basic properties of 
geometric objects. Basically the dimension of a space 
is the amount of information needed to specify points in 
the space accurately. For dynamics the dimension 
provides an indication of the number of essential 
variables required to represent the dynamics. The 
dimensionality of a phase space, since it controls the 
number of possible states, will therefore be associated 
with the number of a priori degrees of freedom of the 
system. There are many possible characterizations of 
dimension, among them the correlation dimension 
introduced by Grassberger and Procaccia (1983) has 
become the most widely used approach for estimating 
generalized dimension from time series data. A detailed 
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review and analysis of this method is given by Theiler 
( 19 8 8) . 

Perhaps one the most interesting and enticing 
results developed from the chaotic dynamics is the 
·notion that it is possible to reconstruct certain 
properties of an attractor in phase space from the time 

! series of a single variable. Following the earlier 
works of Packard et al. (1980) and Takens (1981), the 
basic principle is to create a set of m-dimensional 
vectors from a single time series Xi= x(ti), i = 

3~1 

1, ... ,N, with the Xi corresponding to measurements in 
time. This process is known as 'embedding' and m is the 
'embedding dimension'. The reconstruction is 
accomplished by introducing a time lag p such that the 
m-dimensional vectors have the form 

= (x(ti), x(ti + p), ... , x(ti + (m- 1)p)]. (2) 

prinriple, the various characterizations -- the 
Komogorov entropy, the Lyapunov exponents, and the ' 
generalized dimensions -- are all accessible through 
this reconstruction ( Simm et al., 1987). 

With this very brief note serving as a review and 
·summary, we have outlined the various aspects we expect 
to pursue in order to explore the chaotic dynamics · 

:approach and its application to the ocean waves. 
Detailed analyses of measured ocean wave time series 
will be prcsenled at the conference. 
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STABILITY OF NEARLY BREAKING LONG WAVES 

Nikolaos D. Katopodes 1 , Member ASCE 

This paper adc!res:;cs the development of equations for nonlinear 
spcrsivc waves that have improved stability properties over the com

y used Boussincsq-type equations. Boussincsq-type equations arc 
lc in tile short-wave regime, which, although outside the range 

applicability of the Boussincsq equations, do appear in the numcri
solution of long wave problems as the latter approach the shoreline 
begin to break. Tile basic hypothesis for the development of sta

equations is that the llamiltonian corresponding to Boussincsq-type 
ations either docs not exist at all or becomes negative in the pres

ence of very short waves. This is due to the insufficient approximation 
of the kinetic energy of the now' which in the presence of short waves, 

to remain positive. The present work seeks approximations of the 
energy that remain positive regardless of wave length. 

The mathcinatical foundation for nonlinear dispersive waves is pro
by the theory of Boussincsq, which allows moderate curvature of 

free surface. Certain terms appear in the governing equations that 
unt for the ciTccts of wave dispersion. These terms arc typically 

order I' = ( !1 / L )'.!, where h is the water depth and L a typical wave 
th. For very long waves the 0 (I') terms arc negligible, thus allow

ordinary shallow-water equations to be recovered. In theory, the 
luuJ::.;,Iul;::>u equations arc limited to finite but small wave amplitude, due 

fact that their derivation is based on an expansion of the flow 
·cs in a power series of a small parameter, c: = ajh, where a 

a measure of the wave amplitude. Subsequently, the equations arc 
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